USN

Fourth Semester B.E. Degree Examination, June/July 2013

Engineering Mathematics - IV

Time: 3 hrs. Max. Marks: 100

> Note: 1. Answer FIVE full questions, selecting at least TWO questions from each part. 2. Any missing data may be suitably assumed.

- $\frac{\mathbf{PART} \mathbf{A}}{\mathbf{Employ}}$ Taylor's series method to obtain approximate value of y at $\mathbf{x} = 0.1$ and $\mathbf{x} = 0.2$ for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0 considering upto fourth degree term and compare the numerical solution obtained at x = 0.2 with the exact solution $y = 3(e^{2x} - e^x)$.
 - b. Using Fourth order Runge-Kutta method to solve $(x+y)\frac{dy}{dx} = 1$, y(0.4) = 1 at x = 0.5, correct to 4 decimal place.
 - c. If $\frac{dy}{dx} = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040, y(0.3) = 2.090 find y(0.4)corrected to 4 decimal places by using Milne's predictor and corrector formula (use corrector formula twice).
- Define an analytic function and obtain Cauchy-Reimann equations in the Cartesian form. 2 a. (06 Marks)
 - Show that the function $u = \sin x \cosh y + 2\cos x \sin hy + x^2 y^2 + 4xy$ is a harmonic function and determine the corresponding analytic function.
 - c. Find the bilinear transformation that maps the points 1, i, -1 respectively onto the points i, 0, -i under the transformation find the image of |z| < 1.
- If f(z) = u + iv is an analytic function and f'(z) is continuous at each point with in and on a closed curve c, then show that $\int_{z}^{z} f(z)dz = 0$.
 - Expand $\frac{1}{(z-1)(z-2)}$ in a region, (i) |z| < 1, (ii) 1 < |z| < 2, (iii) |z| > 2, (iv) 0 < |z-1| < 1, (iv) |z-1| > 1.
 - Evaluate $\int_{c}^{\infty} \frac{ze^{z}}{(z^{2}-1)} dz$ where c:|z|=2 using Cauchy's residue theorem.
- Obtain a series solution for the differential equation $(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dy} y = 0$. (06 Marks)
 - Obtain the series solution of Legendre's differential equation,

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n-1)y = 0$$

leading to Legendre's polynomial.

(07 Marks)

Prove the following:

$$J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}, \quad J_{-5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3}{x} \sin x + \frac{3 - x^2}{x^2} \cos x \right\} \quad (07 \text{ Marks})$$

PART - B

5 a. Fit a curve of the form $y = a + bx + cx^2$ to the data by the method of least squares. (06 Marks)

X	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

b. Find the lines of regression and hence find the coefficient of correlation for the following data:

(07 Marks)

X	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

c. Let a and B are any two events, then prove that $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ and hence prove,

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C).$$
 (07 Marks)

6 a. Find the value of K, such that the following represents a finite probability distribution and find mean and standard deviation also find (i) $P(X \le 1)$, (ii) P(X > 1), (iii) $P(-1 < x \le 2)$

X -3	-2	-1	0	1	2	3
P(X) K	2K	3K	4K	3K	2K	K

(06 Marks)

b. If 10% of the rivets produced by a machine are defective, find the probability that out of 12 randomly choosen rivets: i) Exactly 2 will be defective; ii) At least 2 will be defective; iii) None will be defective. (07 Marks)

c. 200 students appeared in an examination, distribution of marks is assumed to be normal with mean = μ = 30 and S.D. = σ = 6.25, how many students are expected to get marks.

i) Between 20 and 40

ii) Less than 35.

(07 Marks)

7 a. A coin was tossed 400 times and the head turned up 216 times. Test the hypothesis at 5% level of significance that coin is unbiased. (06 Marks)

b. A sample of 12 measurement of the diameter of metal ball gave the mean 7.38 mm with S.D. 1.24 mm. Find 95% and 99% confidence limits for actual diameter given $t_{0.05}(11) = 2.2$ and $t_{0.01}(11) = 3.11$. (07 Marks)

c. A set of similar coins are tossed 320 times and the observations are

No. of heads	0	1.4	2	3	4	5
Frequency	6 -	27	72	112	71	32

Test the hypothesis that the data follows a binomial distributions. For 5df we have $x_{0.05}^2 = 11.07$. (07 Marks)

8 a. The joint probability distribution of two discrete random variable x and y is given by the following table. Determine the marginal distribution of x and y. Also find whether x and y are independent. (06 Marks)

У	1	3	6
x			
1	1/9	1/6	1/18
3	1/6	1/4	1/12
6	1/18	1/12	1/36

b. Show that $P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1/2 & 1/2 & 0 \end{bmatrix}$ is an regular stochastic matrix and find the corresponding unique

fixed probability vector.

(07 Marks)

c. Explain: i) Regular and irreducible Markov chain

ii) Periodic state

iii) State distribution and higher transition probabilities.

(07 Marks)